Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle=(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
@article{118556, author = {Shutao Chen and Marek Wis\l a}, title = {Extreme compact operators from Orlicz spaces to $C(\Omega)$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {63-77}, zbl = {0801.46027}, mrnumber = {1240204}, language = {en}, url = {http://dml.mathdoc.fr/item/118556} }
Chen, Shutao; Wisła, Marek. Extreme compact operators from Orlicz spaces to $C(\Omega)$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 63-77. http://gdmltest.u-ga.fr/item/118556/
Differential Inclusions, Springer Verlag, Berlin, 1984. | MR 0755330 | Zbl 0538.34007
Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747-756. (1965) | MR 0209862 | Zbl 0141.32101
Stable convex sets and extreme operators, Math. Ann. 231 (1978), 193-203. (1978) | MR 0467249
Linear Operators I, General Theory, Pure Appl. Math., vol. 7, Interscience, New York, 1958. | MR 0117523 | Zbl 0084.10402
Extreme points in $C(K,L^{\varphi }(\mu))$, Proc. Amer. Math. Soc. 98 (1986), 611-614. (1986) | MR 0861761 | Zbl 0606.46019
Convex Functions and Orlicz Spaces, Nordhoff, Groningen, 1961.
Extreme points of Orlicz spaces (in Chinese), J. Zhongshan University, no. 2 (1983), 27-36.
Classical Banach Spaces II, Springer Verlag, Berlin-Heidelberg- New York, 1977. | MR 0500056 | Zbl 0403.46022
Banach Function Spaces, Thesis, Delft, 1955. | MR 0072440 | Zbl 0162.44701
Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) | MR 0077107 | Zbl 0071.15902
Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. (1970) | MR 0262804 | Zbl 0198.46601
Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983. | MR 0724434 | Zbl 0557.46020
Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. Acad. Pol., série A, Kraków (1932), 207-220. | Zbl 0006.31503
On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) | MR 0450938 | Zbl 0339.46001
Extreme points of Orlicz sequence spaces (in Chinese), J. Daqing Oil College, no. 1 (1983), 112-121. (1983)
Extreme points and stable unit balls in Orlicz sequence spaces, Archiv der Math. 56 (1991), 482-490. (1991) | MR 1100574
A full description of extreme points in $C(Ømega , L^{\varphi }(\mu))$, Proc. of Amer. Math. Soc. 113 (1991), 193-200. (1991) | MR 1072351
Geometry of Orlicz Spaces (in Chinese), Harbin Institute of Technology, Harbin, 1986.
On calculation of rotundity of Orlicz spaces (in Chinese), J. Harbin Inst. of Technology, no. 2 (1978), 1-12.