We obtain an existence theorem for the problem (0.1) where the coefficients $a_{ij}(x,s)$ satisfy a degenerate ellipticity condition and hypotheses weaker than the continuity with respect to the variable $s$.
@article{118555, author = {Salvatore Bonafede}, title = {Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {55-61}, zbl = {0823.35067}, mrnumber = {1240203}, language = {en}, url = {http://dml.mathdoc.fr/item/118555} }
Bonafede, Salvatore. Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 55-61. http://gdmltest.u-ga.fr/item/118555/
New Lower Semicontinuity Results for Integral Functional, Rendiconti Accademia Naz. delle Scienze detta dei XL-Memorie di Matematica 105$^\bold o$ (1987), vol. XI., fasc. 1, 1-42. | MR 0930856
Quasilinear elliptic equations with discontinuous coefficients, Atti Acc. Lincei Rend. fis. (8), vol. LXXXII (1988), 21-28. | MR 0999834
Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, 1974. | MR 0463993
Sulle $W$-soluzioni dei problemi al contorno per operatori ellittici degeneri, Ricerche di Matematica, suppl. vol. XXXVI (1987).
Teoremi di esistenza per i problemi al contorno relativi alle equazioni ellittiche quasilineari, Ricerche di Matematica 37 (1988), fasc. 1, 157-176.
Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) | MR 0367142 | Zbl 0296.28003
Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR 0244627 | Zbl 0177.37404
Una diseguaglianza variazionale associata a un operatore ellittico che puó degenerare, Rend. Acc. Naz. Lincei 55 (1973), 149-160. (1973) | MR 0463672
Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1968), 1-122. (1968) | MR 0249828
A remark on quasilinear elliptic variational inequalities with discontinuous coefficients, Rend. Mat. Acc. Lincei s. 9, vol. 1 (1990), 17-19. | MR 1081821
Elliptic Differential Equations and Obstacle Problem, Plenum Press, 1987.