We show that the class of principal ideals and the class of semiprime ideals are rhomboidal hereditary in the class of modular lattices. Similar results are presented for the class of ideals with forbidden exterior quotients and for the class of prime ideals.
@article{118544, author = {Ladislav Beran}, title = {On the rhomboidal heredity in ideal lattices}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {723-726}, zbl = {0782.06007}, mrnumber = {1240194}, language = {en}, url = {http://dml.mathdoc.fr/item/118544} }
Beran, Ladislav. On the rhomboidal heredity in ideal lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 723-726. http://gdmltest.u-ga.fr/item/118544/
Orthomodular Lattices (Algebraic Approach), Reidel Dordrecht (1985). (1985) | MR 0784029 | Zbl 0558.06008
On semiprime ideals in lattices, J. Pure Appl. Algebra 64 (1990), 223-227. (1990) | MR 1061299 | Zbl 0703.06003
On ideal theory for lattices, Acta Sci. Math. 19 (1958), 82-92. (1958) | MR 0095795
Semiprime ideals in general lattices, J. Pure Appl. Algebra 56 (1989), 105-118. (1989) | MR 0979666 | Zbl 0665.06006