A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
@article{118540, author = {Ji\v r\'\i\ Ad\'amek and Jan Reiterman}, title = {The category of uniform spaces as a completion of the category of metric spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {689-693}, zbl = {0804.18001}, mrnumber = {1240190}, language = {en}, url = {http://dml.mathdoc.fr/item/118540} }
Adámek, Jiří; Reiterman, Jan. The category of uniform spaces as a completion of the category of metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 689-693. http://gdmltest.u-ga.fr/item/118540/
Theory of Mathematical Structures, Reidel Publ. Comp., Dordrecht, 1983. | MR 0735079
Least and largest initial completion, Comment. Math. Univ. Carolinae 20 (1979), 43-75. (1979) | MR 0526147
Topological Spaces, Academia Prague, 1966. | MR 0211373
Partial completions of concrete functors, Cahiers Topo. Géom. Diff. 22 (1981), 315-328. (1981) | MR 0649079
Initial completions, Math. Z. 150 (1976), 101-110. (1976) | MR 0437614 | Zbl 0319.18001
Ultrafilters on $ømega $ and atoms in the lattice of uniformities I, Topology and Appl. 30 (1988), 1-17. (1988) | MR 0964058