The category of uniform spaces as a completion of the category of metric spaces
Adámek, Jiří ; Reiterman, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 689-693 / Harvested from Czech Digital Mathematics Library

A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.

Publié le : 1992-01-01
Classification:  18A32,  18A35,  54B30,  54E15,  54E35
@article{118540,
     author = {Ji\v r\'\i\ Ad\'amek and Jan Reiterman},
     title = {The category of uniform spaces  as a completion of the category of metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {689-693},
     zbl = {0804.18001},
     mrnumber = {1240190},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118540}
}
Adámek, Jiří; Reiterman, Jan. The category of uniform spaces  as a completion of the category of metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 689-693. http://gdmltest.u-ga.fr/item/118540/

Adámek J. Theory of Mathematical Structures, Reidel Publ. Comp., Dordrecht, 1983. | MR 0735079

Adámek J.; Herrlich H.; Strecker G.E. Least and largest initial completion, Comment. Math. Univ. Carolinae 20 (1979), 43-75. (1979) | MR 0526147

Čech E. Topological Spaces, Academia Prague, 1966. | MR 0211373

Ehersmann A.E. Partial completions of concrete functors, Cahiers Topo. Géom. Diff. 22 (1981), 315-328. (1981) | MR 0649079

Herrlich H. Initial completions, Math. Z. 150 (1976), 101-110. (1976) | MR 0437614 | Zbl 0319.18001

Pelant J.; Reiterman J.; Rödl V.; Simon P. Ultrafilters on $ømega $ and atoms in the lattice of uniformities I, Topology and Appl. 30 (1988), 1-17. (1988) | MR 0964058