An elementary construction for an abundance of vector topologies $\xi $ on a fixed infinite dimensional vector space $E$ such that $(E,\xi )$ has not the Hahn-Banach extension property but the topological dual $(E,\xi )'$ separates points of $E$ from zero is given.
@article{118533, author = {Jerzy K\k akol}, title = {Simple construction of spaces without the Hahn-Banach extension property}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {623-624}, zbl = {0777.46003}, mrnumber = {1240183}, language = {en}, url = {http://dml.mathdoc.fr/item/118533} }
Kąkol, Jerzy. Simple construction of spaces without the Hahn-Banach extension property. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 623-624. http://gdmltest.u-ga.fr/item/118533/
Linear functionals in $H^p$-spaces with $0 , J. Reine Angew. Math. 238 (1969), 32-60. (1969)
| MR 0259579
Basic sequences in $F$-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-167. (1974)
| MR 0415259
| Zbl 0296.46010
Nonlocally convex spaces and the Hahn-Banach extension property, Bull. Acad. Polon. Sci. 33 (1985), 381-393. (1985)
| MR 0821575
| Zbl 0588.46004
Exotic topologies for linear spaces, Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961.
| MR 0154088
| Zbl 0111.10701
Examples of proper closed weakly dense subspaces in non-locally convex $F$-spaces, Israel J. Math. 7 (1969), 369-380. (1969)
| MR 0257696
| Zbl 0202.39303
Topics in Functional Analysis, Springer Verlag 45 (1967).
| MR 0223854
| Zbl 0156.36103