The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$.
@article{118531, author = {Cheng Lin-Zhi and Brian Fisher}, title = {The product of distributions on $R^m$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {605-614}, zbl = {0818.46035}, mrnumber = {1240181}, language = {en}, url = {http://dml.mathdoc.fr/item/118531} }
Lin-Zhi, Cheng; Fisher, Brian. The product of distributions on $R^m$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 605-614. http://gdmltest.u-ga.fr/item/118531/
Several products of distributions on $R^m$, Proc. R. Soc. Lond. A 426 (1989), 425-439. (1989) | MR 1030468
Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398. (1959-60) | MR 0124678 | Zbl 0097.10503
The product of distributions, Quart. J. Math. (2) 22 (1971), 291-298. (1971) | MR 0287308 | Zbl 0213.13104
The product of the distributions $x_+^{-r-1/2}$ and $x_-^{-r-1/2}$, Proc. Camb. Phil. Soc. 71 (1972), 123-130. (1972) | MR 0296690 | Zbl 0239.46031
The neutrix distribution product $x_+^{-r}\delta ^{(r-1)}(x)$, Studia Sci. Math. Hungar. 9 (1974), 439-441. (1974) | MR 0412805
On the product of distributions in $m$ variables, Jiangsu Coll. Jnl. 11 (1990), 1-10. (1990) | MR 1069541
Théorie des distributions, Vol. I, II, Herman, 1957. | MR 0107812 | Zbl 0962.46025