We show several examples of n.a\. valued fields with involution. Then, by means of a field of this kind, we introduce ``n.a\. Hilbert spaces'' in which the norm comes from a certain hermitian sesquilinear form. We study these spaces and the algebra of bounded operators which are defined on them and have an adjoint. Essential differences with respect to the usual case are observed.
@article{118527, author = {J. Antonio Alvarez}, title = {$C^\ast$-algebras of operators in non-archimedean Hilbert spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {573-580}, zbl = {0784.46063}, mrnumber = {1240177}, language = {en}, url = {http://dml.mathdoc.fr/item/118527} }
Alvarez, J. Antonio. $C^\ast$-algebras of operators in non-archimedean Hilbert spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 573-580. http://gdmltest.u-ga.fr/item/118527/
Involutions on non-archimedean fields and algebras, Actas XIII Jornadas Hispano-Lusas de Matemáticas, Valladolid, 1988, to appear.
Productos internos en espacios normados no arquimedianos, Doctoral dissertation, Universidad de Bilbao, 1976.
Measures on orthomodular vector space lattices, Studia Mathematica 88 (1988), 183-195. (1988) | MR 0931041 | Zbl 0656.46051
Measures on infinite-dimensional orthomodular spaces, Foundations of Physics 20 (1990), 575-604. (1990) | MR 1060623
Analyse non-Archimedienne, Springer-Verlag, 1970. | MR 0295033 | Zbl 0207.12402
Commutative non-archimedean $C^\ast $-algebras, Pacific J. Math. 78 (1978), 433-446. (1978) | MR 0519764 | Zbl 0393.46054
Functional Analysis and Valuation Theory, Marcel Dekker, 1971. | MR 0361697 | Zbl 0218.46004
Inner product modules over $B^\ast $-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. (1973) | MR 0355613 | Zbl 0239.46062
Nonarchimedean Functional Analysis, Marcel Dekker, 1978.