Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
Matoušek, Jiří
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 451-463 / Harvested from Czech Digital Mathematics Library

Let $(X,\rho)$, $(Y,\sigma)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{Lip} = \sup \{\sigma (f(x),f(y))/\rho(x,y)$; $x,y\in X$, $x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{Lip}.\|f^{-1}\|_{Lip}$ (the {\sl distortion\/} of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon>0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\to Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)

Publié le : 1992-01-01
Classification:  05C55,  05D10,  54C25,  54E35
@article{118513,
     author = {Ji\v r\'\i\ Matou\v sek},
     title = {Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {451-463},
     zbl = {0769.05093},
     mrnumber = {1209287},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118513}
}
Matoušek, Jiří. Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 451-463. http://gdmltest.u-ga.fr/item/118513/

Alon N.; Milman J. Embeddings of $l^k_{\infty}$ in finite dimensional Banach spaces, Israel J. Math. 45 (1983), 265-280. (1983) | MR 0720303

Aronszajn N. Differentiability of Lipschitz mappings between Fréchet spaces, Studia Math. 57 (1976), 147-190. (1976) | MR 0425608

Bretagnolle J.; Dacunha-Castelle D.; Krivine J.L. Lois stables et espaces $L^p$, Ann. Inst. H. Poincaré, Sect. B 2(1966) pp. 231-259. | MR 0203757

Benyamini Y. The uniform classification of Banach spaces, Longhorn Notes, The Univ. of Texas at Austin, Functional analysis seminar 1984-85, pp. 15-38. | MR 0832247 | Zbl 1095.46005

Bourgain J.; Figiel T.; Milman V. On Hilbertian subspaces of finite metric spaces, Israel J. Math. 55 (1986), 147-152. (1986) | MR 0868175

Bourgain J.; Milman V.; Wolfson H. On type of metric spaces, Trans. Am. Math. Soc. 294 (1986), 295-317. (1986) | MR 0819949 | Zbl 0617.46024

Diestel J.; Uhl J.J., Jr. Vector measures, Math. Surveys 15, AMS, Providence, 1977. | MR 0453964 | Zbl 0521.46035

Enflo P. On a problem of Smirnov, Ark. Mat. 8 (1969), 107-109. (1969) | MR 0415576

Enflo P. On the nonexistence of uniform homeomorphisms between $L_p$-spaces, Ark. Mat. 8 (1969), 103-105. (1969) | MR 0271719

Enflo P. Uniform structures and square roots in topological groups II, Israel J. Math. 8 (1970), 253-272. (1970) | MR 0263969 | Zbl 0214.28501

Fichet B. $L_p$ spaces in data analysis, in: Classification and related methods of data analysis, H.H. Bock ed., North Holland, 1988, pp. 439-444.

Graham R.L.; Rothschild B.L.; Spencer J.H. Ramsey theory, J.Wiley & sons, 1980. | MR 0591457 | Zbl 0705.05061

Johnson W.; Schechtman G. Embedding $l_p^m$ into $l_1^n$, Acta Math. 149 (1982), 71-85. (1982) | MR 0674167

Kirchheim B. Geometry of measures (in Czech), thesis, Charles University, Prague, 1988. | MR 1029559

Lindenstrauss J. On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1966), 268-287. (1966) | MR 0167821

Lindenstrauss J.; Tzafriri L. Classical Banach spaces, Lecture Notes in Mathematics 338, Springer-Verlag, 1973. | MR 0415253 | Zbl 0852.46015

Matoušek J. Lipschitz distance of metric spaces (in Czech), CSc. degree thesis, Charles University, 1989.

Milman V.D.; Schechtman G. Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200, Springer-Verlag, 1986. | MR 0856576 | Zbl 0606.46013

Nešetřil J. Ramsey Theory, Chapter for Handbook of Combinatorics, North-Holland, to appear. | MR 1373681

Nešetřil J.; Rödl V. Partition theory and its applications, in: Surveys in Combinatorics, (B. Bollobás ed.), Cambridge Univ. Press, Cambridge-London, 1979 pages 96-156. | MR 0561308

Preiss D. Differentiability of Lipschitz functions on Banach spaces, Journal of Functional Analysis 91 (1990), 312-345. (1990) | MR 1058975 | Zbl 0711.46036

Schechtman G. Random embeddings of Euclidean spaces in sequence spaces, Israel J. Math. 40 (1981), 187-192. (1981) | MR 0634905 | Zbl 0474.46004