We prove the existence of a partially regular solution for a system of degenerate variational inequalities with natural growth.
@article{118511, author = {Martin Fuchs}, title = {Existence via partial regularity for degenerate systems of variational inequalities with natural growth}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {427-435}, zbl = {0774.49008}, mrnumber = {1209285}, language = {en}, url = {http://dml.mathdoc.fr/item/118511} }
Fuchs, Martin. Existence via partial regularity for degenerate systems of variational inequalities with natural growth. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 427-435. http://gdmltest.u-ga.fr/item/118511/
$p$-harmonic obstacle problems. Part I: Partial regularity theory, Annali Mat. Pura Applicata 156 (1990), 127-158. (1990) | MR 1080213
$p$-harmonic obstacle problems. Part III: Boundary regularity, Annali Mat. Pura Applicata 156 (1990), 159-180. (1990) | MR 1080214
Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 33-41. (1992) | MR 1173743 | Zbl 0773.49005
Elliptic partial differential equations of second order, Springer Verlag, 1977. | MR 0473443 | Zbl 1042.35002
Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 181-220. (1979) | MR 0542048