Existence via partial regularity for degenerate systems of variational inequalities with natural growth
Fuchs, Martin
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 427-435 / Harvested from Czech Digital Mathematics Library

We prove the existence of a partially regular solution for a system of degenerate variational inequalities with natural growth.

Publié le : 1992-01-01
Classification:  35J85,  49J40,  49N60
@article{118511,
     author = {Martin Fuchs},
     title = {Existence via partial regularity for degenerate systems of variational inequalities  with natural growth},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {427-435},
     zbl = {0774.49008},
     mrnumber = {1209285},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118511}
}
Fuchs, Martin. Existence via partial regularity for degenerate systems of variational inequalities  with natural growth. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 427-435. http://gdmltest.u-ga.fr/item/118511/

Fuchs M. $p$-harmonic obstacle problems. Part I: Partial regularity theory, Annali Mat. Pura Applicata 156 (1990), 127-158. (1990) | MR 1080213

Fuchs M. $p$-harmonic obstacle problems. Part III: Boundary regularity, Annali Mat. Pura Applicata 156 (1990), 159-180. (1990) | MR 1080214

Fuchs M. Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 33-41. (1992) | MR 1173743 | Zbl 0773.49005

Gilbarg D.; Trudinger N.S. Elliptic partial differential equations of second order, Springer Verlag, 1977. | MR 0473443 | Zbl 1042.35002

Hildebrandt S.; Widman K.-O. Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 181-220. (1979) | MR 0542048