\font\jeden=rsfs10 Let $\Cal H_{\mu }$ be the Zemanian space of Hankel transformable functions, and let $\Cal H'_{\mu }$ be its dual space. In this paper $\Cal H_{\mu }$ is shown to be nuclear, hence Schwartz, Montel and reflexive. The space $\text{\jeden O}$, also introduced by Zemanian, is completely characterized as the set of multipliers of $\Cal H_{\mu }$ and of $\Cal H'_{\mu }$. Certain topologies are considered on $\Cal O$, and continuity properties of the multiplication operation with respect to those topologies are discussed.
@article{118508, author = {Jorge J. Betancor and Isabel Marrero}, title = {Multipliers of Hankel transformable generalized functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {389-401}, zbl = {0801.46047}, mrnumber = {1209282}, language = {en}, url = {http://dml.mathdoc.fr/item/118508} }
Betancor, Jorge J.; Marrero, Isabel. Multipliers of Hankel transformable generalized functions. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 389-401. http://gdmltest.u-ga.fr/item/118508/
An Introduction to the Theory of Distributions, R.E. Krieger Publishing Company, Malabar, Florida, 1981. | Zbl 0512.46040
Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Massachusetts, 1966. | MR 0205028
Nuclear Locally Convex Spaces, Springer-Verlag, Berlin, 1972. | MR 0350360 | Zbl 0308.47024
Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967. | MR 0225131 | Zbl 1111.46001
Schwartz Spaces, Nuclear Spaces, and Tensor Products, Lecture Notes in Math. 726, Springer-Verlag, Berlin, 1979. | MR 0541034 | Zbl 0413.46001
The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14 (1966), 678-690. (1966) | MR 0211211 | Zbl 0154.13804
Generalized Integral Transformations, Interscience, New York, 1968. | MR 0423007 | Zbl 0643.46029