We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
@article{118501, author = {Lutz Heindorf}, title = {Zero-dimensional Dugundji spaces admit profinite lattice structures}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {329-334}, zbl = {0789.54011}, mrnumber = {1189664}, language = {en}, url = {http://dml.mathdoc.fr/item/118501} }
Heindorf, Lutz. Zero-dimensional Dugundji spaces admit profinite lattice structures. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 329-334. http://gdmltest.u-ga.fr/item/118501/
Not all dyadic spaces are supercompact, Comment. Math. Univ. Carolinae 31 (1990), 775-779. (1990) | MR 1091375 | Zbl 0716.54017
Compact spaces and spaces of maximal complete subgraphs, Trans. Amer. Math. Soc. 283 (1984), 329-338. (1984) | MR 0735426 | Zbl 0554.54009
The algebraic theory of semigroups, vol. 1, Providence, 1964. | Zbl 0238.20076
On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and ${AE}(0$-$\dim)$, Studia Math. 52 (1974), 23-31. (1974) | MR 0418025
Boolean semigroup rings and exponentials of compact, zero-dimensional spaces, Fund. Math. 135 (1990), 37-47. (1990) | MR 1074647 | Zbl 0716.54006
Projective Boolean Algebras, Chapter 20 of: J.D. Monk (ed.), Handbook of Boolean algebras, Amsterdam, 1989, vol. 3, 741-773. | MR 0991609 | Zbl 0258.06010
Theorems on compact totally disconnected semigroups and lattices, Proc. Amer. Math. Soc. 8 (1957), 623-626. (1957) | MR 0087032 | Zbl 0081.25602
Functors and uncountable powers of compacts (in Russian), Uspehi Mat. Nauk 36 (1981), 3-62. (1981) | MR 0622720