It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.
@article{118496, author = {Piotr Zakrzewski}, title = {Strong Fubini axioms from measure extension axioms}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {291-297}, zbl = {0765.03026}, mrnumber = {1189659}, language = {en}, url = {http://dml.mathdoc.fr/item/118496} }
Zakrzewski, Piotr. Strong Fubini axioms from measure extension axioms. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 291-297. http://gdmltest.u-ga.fr/item/118496/
Extending Lebesgue measure by infinitely many sets, Pac. J. Math. 115 (1984), 33-45. (1984) | MR 0762199 | Zbl 0582.28004
The normal Moore space conjecture, in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984. | MR 0776635 | Zbl 0562.54039
Axioms of symmetry: throwing darts at the real number line, J. Symbolic Logic 51 (1986), 190-200. (1986) | MR 0830085 | Zbl 0619.03035
Measure algebras, in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989. | MR 0991611 | Zbl 1165.28002
Consequences of Martin's Axiom, Cambridge University Press, 1984. | Zbl 1156.03050
Real-valued-measurable cardinals, to appear. | MR 1234282 | Zbl 0839.03038
A consistent Fubini-Tonelli theorem for nonmeasurable functions, Illinois J. Math. 24 (1980), 390-395. (1980) | MR 0573474 | Zbl 0467.28003
A new proof of the Gitik-Shelah theorem, Israel J. Math. 72 (1990), 373-380. (1990) | MR 1120228 | Zbl 0738.03019
Cardinal conditions for strong Fubini theorems, Trans. Amer. Math. Soc. 321 (1990), 465-481. (1990) | MR 1025758 | Zbl 0715.03022
Strong Fubini theorems from measure extension axioms, an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66. (1991-92)