Four-dimensional curvature homogeneous spaces
Sekigawa, Kouei ; Suga, Hiroshi ; Vanhecke, Lieven
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 261-268 / Harvested from Czech Digital Mathematics Library

We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.

Publié le : 1992-01-01
Classification:  53C20,  53C30
@article{118493,
     author = {Kouei Sekigawa and Hiroshi Suga and Lieven Vanhecke},
     title = {Four-dimensional curvature homogeneous spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {261-268},
     zbl = {0763.53043},
     mrnumber = {1189656},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118493}
}
Sekigawa, Kouei; Suga, Hiroshi; Vanhecke, Lieven. Four-dimensional curvature homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 261-268. http://gdmltest.u-ga.fr/item/118493/

Bérard Bergery L. Les espaces homogènes riemanniens de dimension $4$, Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60. | MR 0769130

Derdziński A. preprint, .

Gromov M. Partial differential equations, Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

Jensen G. Homogeneous Einstein spaces in dimension four, J. Differential Geom. 3 (1969), 309-349. (1969) | MR 0261487

Kowalski O. A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolinae 30 (1989), 85-88. (1989) | MR 0995705 | Zbl 0679.53043

Kowalski O.; Tricerri F.; Vanhecke L. Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien, C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360. (1990) | MR 1071643

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl., to appear. | MR 1193605 | Zbl 0836.53029

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous spaces with a solvable Lie group as homogeneous model, to appear. | MR 1167378 | Zbl 0762.53031

Sekigawa K. On the Riemannian manifolds of the form $B\times _f F$, Kōdai Math. Sem. Rep. 26 (1975), 343-347. (1975) | MR 0438253 | Zbl 0304.53019

Sekigawa K. On some $3$-dimensional curvature homogeneous spaces, Tensor N.S. 31 (1977), 87-97. (1977) | MR 0464115 | Zbl 0356.53016

Singer M.I. Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) | MR 0131248 | Zbl 0171.42503

Takagi H. On curvature homogeneity of Riemannian manifolds, Tôhoku Math. J. 26 (1974), 581-585. (1974) | MR 0365417 | Zbl 0302.53022

Tricerri F.; Vanhecke L. Curvature homogeneous Riemannian manifolds, Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554. (1989) | MR 1026749 | Zbl 0698.53033