Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources.
@article{118483, author = {J. Schr\"oder}, title = {Natural sinks on $Y\_\beta$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {173-179}, zbl = {0761.18004}, mrnumber = {1173759}, language = {en}, url = {http://dml.mathdoc.fr/item/118483} }
Schröder, J. Natural sinks on $Y_\beta$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 173-179. http://gdmltest.u-ga.fr/item/118483/
Abstract and Concrete Categories, Wiley & Sons 1990. | MR 1051419
The category of Urysohn spaces is not cowellpowered, Top. Appl. 16 (1983), 237-241. (1983) | MR 0722116