Natural sinks on $Y_\beta$
Schröder, J.
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 173-179 / Harvested from Czech Digital Mathematics Library

Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources.

Publié le : 1992-01-01
Classification:  18A20,  18A30,  18B30,  54B30,  54C10,  54D10,  54D35,  54G20
@article{118483,
     author = {J. Schr\"oder},
     title = {Natural sinks on $Y\_\beta$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {173-179},
     zbl = {0761.18004},
     mrnumber = {1173759},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118483}
}
Schröder, J. Natural sinks on $Y_\beta$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 173-179. http://gdmltest.u-ga.fr/item/118483/

Adámek J.; Herrlich H.; Strecker G.E. Abstract and Concrete Categories, Wiley & Sons 1990. | MR 1051419

Schröder J. The category of Urysohn spaces is not cowellpowered, Top. Appl. 16 (1983), 237-241. (1983) | MR 0722116