In Part I, we have proved characterization theorems for entropy-like functionals $\delta $, $\lambda $, $E$, $\Delta $ and $\Lambda $ restricted to the class consisting of all finite spaces $P\in \frak W$, the class of all semimetric spaces equipped with a bounded measure. These theorems are now extended to the case of $\delta $, $\lambda $ and $E$ defined on the whole of $\frak W$, and of $\Delta $ and $\Lambda $ restricted to a certain fairly wide subclass of $\frak W$.
@article{118474, author = {Miroslav Kat\v etov}, title = {On entropy-like functionals and codes for metrized probability spaces II}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {79-95}, zbl = {0751.94004}, mrnumber = {1173750}, language = {en}, url = {http://dml.mathdoc.fr/item/118474} }
Katětov, Miroslav. On entropy-like functionals and codes for metrized probability spaces II. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 79-95. http://gdmltest.u-ga.fr/item/118474/
On entropy-like functionals and codes for metrized probability spaces I, Comment. Math. Univ. Carolinae 31 (1990), 49-66. (1990) | MR 1056171
Extended Shannon entropies, Czechoslovak Math. J. 33 (108) (1983), 546-601. (1983) | MR 0721088
On some asymptotic characteristics of totally bounded spaces (in Russian), Doklady Akad. Nauk SSSR 108 (1956), 385-389. (1956)
$\varepsilon $-entropy and $\varepsilon $-capacity of sets in function spaces (in Russian), Uspehi Mat. Nauk 14 no. 2 (1959), 3-86. (1959) | MR 0112032