On superpositionally measurable semi-Carathéodory multifunctions
Zygmunt, Wojciech
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 73-77 / Harvested from Czech Digital Mathematics Library

For multifunctions $F:\/T\times X\to 2^Y$, measurable in the first variable and semicontinuous in the second one, a relation is established between being product measurable and being superpositionally measurable.

Publié le : 1992-01-01
Classification:  28B20
@article{118473,
     author = {Wojciech Zygmunt},
     title = {On superpositionally measurable semi-Carath\'eodory multifunctions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {73-77},
     zbl = {0756.28008},
     mrnumber = {1173749},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118473}
}
Zygmunt, Wojciech. On superpositionally measurable semi-Carathéodory multifunctions. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 73-77. http://gdmltest.u-ga.fr/item/118473/

Appel J. The superposition operator in function spaces - a survey, Expo. Math. 6 (1988), 209-270. (1988) | MR 0949784

Castaing C.; Valadier M. Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin, 1977. | MR 0467310 | Zbl 0346.46038

Himmelberg C.J. Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) | MR 0367142 | Zbl 0296.28003

Kucia A. On the existence of Carathéodory selectors, Bull. Pol. Acad., Math. 32 (1984), 233-241. (1984) | MR 0771908 | Zbl 0562.28004

Lojasiewicz S.Jr. Some theorems of Scorza-Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations, Mathematical Control Theory, Banach Cent. Publ., vol. 14, PWN - Polish Scientific Publishers, Warsaw, 1985, 625-643. | MR 0851255 | Zbl 0576.49024

Mordukhovich B.Š. Some properties of multivalued mappings and differential inclusions with an application to problems of the existence of solutions for optimal controls (in Russian), Izvestiya Akad. Nauk BSSR 1981, VINITI No. 5268-80.

Nowak A. Random differential inclusions; measurable selection approach, Ann. Polon. Math. 49 (1989), 291-296. (1989) | MR 0997521 | Zbl 0674.60062

Papageorgiou N.S. On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. (1987) | MR 0914749 | Zbl 0634.28005

Papageorgiou N.S. On multivalued evolution equations and differential inclusions in Banach spaces, Comment. Math. Univ. St. Pauli 36 (1987), 21-39. (1987) | MR 0892378 | Zbl 0641.47052

Sainte-Beuve M.F. On the extension of von Neumann-Aumann's theorem, J. Funct. Anal. 17 (1974), 112-129. (1974) | MR 0374364 | Zbl 0286.28005

Spakowski A. On superpositionally measurable multifunctions, Acta Univ. Carol., Math. Phys., No. 2, 30 (1989), 149-151. (1989) | MR 1046461 | Zbl 0705.28003

Tsalyuk V.Z. On superpositionally measurable multifunctions (in Russian), Mat. Zametki 43 (1988), 98-102. (1988)

Wagner D.H. Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. (1977) | MR 0486391 | Zbl 0407.28006

Zygmunt W. The Scorza-Dragoni's type property and product measurability of a multifunction of two variables, Rend. Acad. Naz. Sci., XL. Mem. Mat. 12 (1988), 109-115. (1988) | MR 0985060 | Zbl 0677.28004