For $1\leq p\leq\infty$, precise conditions on the parameters are given under which the particular superposition operator $T:f\to |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
@article{118471, author = {Patrick Oswald}, title = {On the boundedness of the mapping $f\to |f|$ in Besov spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {57-66}, zbl = {0766.46018}, mrnumber = {1173747}, language = {en}, url = {http://dml.mathdoc.fr/item/118471} }
Oswald, Patrick. On the boundedness of the mapping $f\to |f|$ in Besov spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 57-66. http://gdmltest.u-ga.fr/item/118471/
Nonlinear superposition operators, Cambr. Univ. Press, Cambridge, 1990. | MR 1066204 | Zbl 1156.47052
Fonctions qui operent sur les espaces de Sobolev, J. Funct. Anal. 97 (1991), 351-360. (1991) | MR 1111186 | Zbl 0737.46011
The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836. (1990) | MR 1055532
Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal. 45 (1972), 294-320. (1972) | MR 0338765 | Zbl 0236.46033
Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347-370. (1973) | MR 0348480 | Zbl 0266.46029
Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1978), 217-229. (1978) | MR 0546508
Approximation of functions of several variables and imbedding theorems (2nd edition), Nauka, Moskva, 1977. | MR 0506247
On estimates for one-dimensional spline approximation, In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124. | MR 1004256 | Zbl 0739.41015
On estimates for hierarchic basis representations of finite element functions, Report N/89/16, FSU Jena, 1989.
Mapping properties of $T:f\to |f|$ in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, J. Approx. Th. (submitted).
Spline functions: basic theory, Wiley, New York, 1981. | MR 0606200 | Zbl 1123.41008
On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czech. Math. J. 39 (1989), 323-347. (1989) | MR 0992137 | Zbl 0693.46039
Superposition of functions in Sobolev spaces of fractional order, A survey. Banach Center Publ. (submitted). | Zbl 0792.47062
Interpolation theory, function spaces, differential operators, Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978. | MR 0500580 | Zbl 0830.46028