Let $(X,d)$, $(Y,\rho)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{\operatorname{Lip}} = \sup \{\rho (f(x),f(y))/d(x,y); x,y\in X, x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{\operatorname{Lip}}.\| f^{-1}\|_{\operatorname{Lip}}$ (the {\sl distortion} of the mapping $f$). We investigate the minimum dimension $N$ such that every $n$-point metric space can be embedded into the space $\ell_{\infty }^N$ with a prescribed distortion $D$. We obtain that this is possible for $N\geq C(\log n)^2 n^{3/D}$, where $C$ is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into $\ell_p^N$ are obtained by a similar method.
@article{118470, author = {Ji\v r\'\i\ Matou\v sek}, title = {Note on bi-Lipschitz embeddings into normed spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {33}, year = {1992}, pages = {51-55}, zbl = {0758.46019}, mrnumber = {1173746}, language = {en}, url = {http://dml.mathdoc.fr/item/118470} }
Matoušek, Jiří. Note on bi-Lipschitz embeddings into normed spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 51-55. http://gdmltest.u-ga.fr/item/118470/
On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), 46-52. (1985) | MR 0815600 | Zbl 0657.46013
On type of metric spaces, Trans. Amer. Math. Soc. 294 (1986), 295-317. (1986) | MR 0819949 | Zbl 0617.46024
Extensions of Lipschitz maps into a Hilbert space, Contemporary Math. 26 (Conference in modern analysis and probability) 189-206, Amer. Math. Soc., 1984. | MR 0737400
On Lipschitz embedding of finite metric spaces in low dimensional normed spaces, in: {\sl Geometrical aspects of functional analysis} (J. Lindenstrauss, V.D. Milman eds.), Lecture Notes in Mathematics 1267, Springer-Verlag, 1987. | MR 0907694 | Zbl 0631.46016
Lipschitz distance of metric spaces (in Czech), CSc. degree thesis, Charles University, 1990.
Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522-536. (1938) | MR 1501980 | Zbl 0019.41502
Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM 1987. | MR 0929258 | Zbl 0822.05060