When $(E,\sigma (E,E'))$ is a $DF$-space?
Krassowska, Dorota ; Śliwa, Wiesƚaw
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 43-44 / Harvested from Czech Digital Mathematics Library

Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].

Publié le : 1992-01-01
Classification:  46A03,  46A04,  46A05,  46A20
@article{118468,
     author = {Dorota Krassowska and Wieslaw Sliwa},
     title = {When $(E,\sigma (E,E'))$ is a $DF$-space?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {43-44},
     zbl = {0782.46006},
     mrnumber = {1173744},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118468}
}
Krassowska, Dorota; Śliwa, Wiesƚaw. When $(E,\sigma (E,E'))$ is a $DF$-space?. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 43-44. http://gdmltest.u-ga.fr/item/118468/

Grothendieck A. Sur les espaces $(F)$ et $(DF)$, Summa Brasil Math. 3 (1954), 57-123. (1954) | MR 0075542 | Zbl 0058.09803

Iyahen O.; Sunday Some remarks on countably barrelled and countably quasibarrelled spaces, Proc. Edinburgh Math. Soc. 15 (1966), 295-296. (1966) | MR 0226357

Radenovič S. Some remarks on the weak topology of locally convex spaces, Publ. de l'Institut Math. 44 (1988), 155-157. (1988) | MR 0995423

Robertson A.; Robertson W. Topological vector spaces, Cambridge Univ. Press, 1973. | MR 0350361 | Zbl 0423.46001

Schaefer H. Topological vector spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1971. | MR 0342978 | Zbl 0983.46002