On the Jacobson radical of graded rings
Kelarev, Andrei V.
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992), p. 21-24 / Harvested from Czech Digital Mathematics Library

All commutative semigroups $S$ are described such that the Jacobson radical is homogeneous in each ring graded by $S$.

Publié le : 1992-01-01
Classification:  16A20,  16A21,  16N20,  16N40,  16W50,  20C05,  20M14
@article{118465,
     author = {Andrei V. Kelarev},
     title = {On the Jacobson radical of graded rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {33},
     year = {1992},
     pages = {21-24},
     zbl = {0815.16025},
     mrnumber = {1173741},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118465}
}
Kelarev, Andrei V. On the Jacobson radical of graded rings. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) pp. 21-24. http://gdmltest.u-ga.fr/item/118465/

Bergman G.M. On Jacobson radicals of graded rings, preprint.

Clifford A.H.; Preston G.B. The Algebraic Theory of Semigroups, Vol. 1., Math. Surveys of the Amer. Math. Soc. 7 (1961). | MR 0132791 | Zbl 0238.20076

Cohen M.; Montgomery S. Group graded rings, smash products and group actions, Trans. Amer. Math. Soc. 282 (1984), 237-258. Addendum: Trans. Amer. Math. Soc. 300 (1987), 810-811. (1984) | MR 0728711 | Zbl 0533.16001

Cohen M.; Rowen L.H. Group graded rings, Commun. Algebra 11 (1983), 1253-1270. (1983) | MR 0696990 | Zbl 0522.16001

Jespers E. On radicals of graded rings, Commun. Algebra 13 (1985), 2457-2472. (1985) | MR 0807485 | Zbl 0575.16001

Jespers E. When is the Jacobson radical of a semigroup ring of a commutative semigroup homogeneous?, Commun. Algebra 109 (1987), 549-560. (1987) | MR 0902968 | Zbl 0619.20045

Jespers E.; Krempa J.; Puczylowski E.R. On radicals of graded rings, Commun. Algebra 10 (1982), 1849-1854. (1982) | MR 0674695 | Zbl 0493.16003

Jespers E.; Puczylowski E.R. The Jacobson and Brown-McCoy radicals of rings graded by free groups, Commun. Algebra 19 (1991), 551-558. (1991) | MR 1100363 | Zbl 0721.16023

Jespers E.; Wauters P. A description of the Jacobson radical of semigroups rings of commutative semigroup, Group and Semigroup Rings, Johannesburg, 1986, 43-89. | MR 0860052

Kelarev A.V. When is the radical of a band sum of rings homogeneous?, Commun. Algebra 18 (1990), 585-603. (1990) | MR 1047329 | Zbl 0697.20049

Munn W.D. On commutative semigroup algebras, Math. Proc. Camb. Phil. Soc. 93 (1983), 237-246. (1983) | MR 0691992 | Zbl 0528.20053

Okninski J. On the radical of semigroup algebras satisfying polynomial identities, Math. Proc. Camb. Phil. Soc. 99 (1986), 45-50. (1986) | MR 0809496 | Zbl 0583.20052

Okninski J.; Wauters P. Radicals of semigroup rings of commutative semigroups, Math. Proc. Camb. Phil. Soc. 99 (1986), 435-445. (1986) | MR 0830356 | Zbl 0599.20104

Puczylowski E.R. Behaviour of radical properties of rings under some algebraic constructions, Coll. Math. Soc. János Bolyai 38 (1982), 449-480. (1982) | MR 0899123

Teply M.L.; Turman E.G.; Quesada A. On semisimple semigroup rings, Proc. Amer. Math. Soc. 79 (1980), 157-163. (1980) | MR 0565329 | Zbl 0445.20043