A note on universal minimal dynamical systems
Turek, Sławomir
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 781-783 / Harvested from Czech Digital Mathematics Library

Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group.

Publié le : 1991-01-01
Classification:  54H20
@article{118459,
     author = {S\l awomir Turek},
     title = {A note on universal minimal dynamical systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {781-783},
     zbl = {0765.54035},
     mrnumber = {1159826},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118459}
}
Turek, Sławomir. A note on universal minimal dynamical systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 781-783. http://gdmltest.u-ga.fr/item/118459/

Balcar B.; Błaszczyk A. On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. (1990) | MR 1056164

Comfort W.W. Topological Groups, Handbook of set-theoretic topology, North-Holland, 1984, 1143-1260. | MR 0776643 | Zbl 1071.54019

Van Douwen E.K. The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space, for Abelian groups $G$, Topology and its Appl. 34 (1990), 69-91. (1990) | MR 1035461 | Zbl 0696.22003

Ellis R. Lectures on Topological Dynamics, Benjamin, New York, 1969 (). | MR 0267561 | Zbl 0193.51502

Hewitt E.; Ross K.A. Abstract Harmonic Analysis I, Springer, Berlin, 1963.

Van Der Woude J. Topological Dynamix, Mathematisch Centrum, Amsterdam, 1982. | Zbl 0654.54026