Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group.
@article{118459,
author = {S\l awomir Turek},
title = {A note on universal minimal dynamical systems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {32},
year = {1991},
pages = {781-783},
zbl = {0765.54035},
mrnumber = {1159826},
language = {en},
url = {http://dml.mathdoc.fr/item/118459}
}
Turek, Sławomir. A note on universal minimal dynamical systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 781-783. http://gdmltest.u-ga.fr/item/118459/
On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolinae 31 (1990), 7-11. (1990) | MR 1056164
Topological Groups, Handbook of set-theoretic topology, North-Holland, 1984, 1143-1260. | MR 0776643 | Zbl 1071.54019
The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space, for Abelian groups $G$, Topology and its Appl. 34 (1990), 69-91. (1990) | MR 1035461 | Zbl 0696.22003
Lectures on Topological Dynamics, Benjamin, New York, 1969 (). | MR 0267561 | Zbl 0193.51502
Abstract Harmonic Analysis I, Springer, Berlin, 1963.
Topological Dynamix, Mathematisch Centrum, Amsterdam, 1982. | Zbl 0654.54026