We prove the existence of $(2^\tau, \tau )$-matrix points among uniform and regular points of Čech--Stone compactification of uncountable discrete spaces and discuss some properties of these points.
@article{118458, author = {Anatoly A. Gryzlov}, title = {On matrix points in \v Cech--Stone compactifications of discrete spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {775-780}, zbl = {0768.54019}, mrnumber = {1159825}, language = {en}, url = {http://dml.mathdoc.fr/item/118458} }
Gryzlov, Anatoly A. On matrix points in Čech--Stone compactifications of discrete spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 775-780. http://gdmltest.u-ga.fr/item/118458/
Weak $p$-points in $\beta N\setminus N$, Coll. Math. Soc. Janos Bolyai, Topology, Budapest, vol. 23, 341-349.
Ob odnom klasse tochek prostranstva $N^{\ast }$, Leningradskaya mezhdunarodnaya konf., Leningrad, Nauka, 1982, p. 57.
K teorii prostranstva $\beta N$, Obshchaya topologiya, Mosk. Univ., Moskva, 1986, 20-33.
Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304. (1965) | MR 0196692