Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
@article{118449, author = {Paolamaria Pietramala}, title = {Convergence of approximating fixed points sets for multivalued nonexpansive mappings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {697-701}, zbl = {0756.47039}, mrnumber = {1159816}, language = {en}, url = {http://dml.mathdoc.fr/item/118449} }
Pietramala, Paolamaria. Convergence of approximating fixed points sets for multivalued nonexpansive mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 697-701. http://gdmltest.u-ga.fr/item/118449/
Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational. Mech. Anal. 24 (1967), 82-90. (1967) | MR 0206765 | Zbl 0148.13601
Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. (1980) | MR 0576291 | Zbl 0437.47047
On approximating fixed points, Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. (1986) | MR 0843624 | Zbl 0597.47035
Fixed points of contractive functions, Boll. UMI 5 (1972), 26-42. (1972) | MR 0309095 | Zbl 0249.54026
Fixed points for generalized multivalued contractions, Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. (1972) | MR 0341460
Multivalued contraction mappings in complete metric spaces, Math. Sem. Notes 2 (1974), 45-49. (1974) | MR 0413070
Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (1986), 528-532. (1986) | MR 0864769 | Zbl 0631.47041
Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286-292. (1973) | MR 0310718