The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\bold R^m)$ is approximated by $\Cal C ^1$ functions strongly in $\Cal A^q(\Omega ,\bold R^m)$ whenever $q
@article{118445,
author = {Jan Mal\'y},
title = {$L^p$-approximation of Jacobians},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {32},
year = {1991},
pages = {659-666},
zbl = {0753.46024},
mrnumber = {1159812},
language = {en},
url = {http://dml.mathdoc.fr/item/118445}
}
Malý, Jan. $L^p$-approximation of Jacobians. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 659-666. http://gdmltest.u-ga.fr/item/118445/
Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 106 (1989), 97-159. {Erratum and addendum}. Arch. Rat. Mech. Anal. 109 (1990), 385-592. (1990) | MR 0980756
Cartesian currents and variational problems for mappings into spheres, Annali S.N.S. Pisa 16 (1989), 393-485. (1989) | MR 1050333
The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65 (1989), 489-507. (1989) | MR 1019705
The Dirichlet integral for mappings between manifolds: Cartesian currents and homology, Università di Firenze, preprint, 1991. | MR 1183409
Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal. 100 (1988), 105-127. (1988) | MR 0913960
Weakly Differentiable Functions. Sobolev Spaces and Function of Bounded Variation, Graduate Text in Mathematics 120, Springer-Verlag, 1989. | MR 1014685