Operational quantities derived from the norm and generalized Fredholm theory
Gonzalez, Manuel ; Martinón, Antonio
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 645-657 / Harvested from Czech Digital Mathematics Library

We introduce and study some operational quantities associated to a space ideal $\Bbb A$. These quantities are used to define generalized semi-Fredholm operators associated to $\Bbb A$, and the corresponding perturbation classes which extend the strictly singular and strictly cosingular operators, and we study the generalized Fredholm theory obtained in this way. Finally we present some examples and show that the classes of generalized semi-Fredholm operators are non-trivial for several classical space ideals.

Publié le : 1991-01-01
Classification:  46B28,  47A30,  47A53,  47B10
@article{118444,
     author = {Manuel Gonzalez and Antonio Martin\'on},
     title = {Operational quantities derived from the norm and generalized Fredholm theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {645-657},
     zbl = {0762.47005},
     mrnumber = {1159811},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118444}
}
Gonzalez, Manuel; Martinón, Antonio. Operational quantities derived from the norm and generalized Fredholm theory. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 645-657. http://gdmltest.u-ga.fr/item/118444/

Alvarez J.A.; Alvarez T.; Gonzalez M. The gap between subspaces and perturbation of non semi-Fredholm operators, Bull. Austral. Math. Soc., to appear. | MR 1165143 | Zbl 0785.47009

Alvarez T.; Gonzalez M. Some examples of tauberian operators, Proc. Amer. Math. Soc. 111 (1991), 1023-1027. (1991) | MR 1033955

Alvarez T.; Gonzalez M.; Onieva V.M. Totally incomparable Banach spaces and three-space Banach space ideals, Math. Nachrichten 131 (1987), 83-88. (1987) | MR 0908801 | Zbl 0659.46009

Alvarez T.; Gonzalez M.; Onieva V.M. Characterizing two classes of operator ideals, Contribuciones Matematicas Homenaje Prof. Plans, Univ. Zaragoza (1990), 7-21.

Fajnshtejn A.S. On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian), Spektr. Teor. Oper. 6 (1985), 182-185, Zbl. 634#47010. (1985)

Goldberg S. Unbounded Linear Operators, McGraw Hill, 1966. | MR 0200692 | Zbl 1152.47001

Gonzalez M.; Martinon A. Operational quantities and operator ideals, XIV Jornadas Hispano Lusas de Mat. (Univ. La Laguna, 1989), Univ. La Laguna, 1990, 119-124. | MR 1112904

Gonzalez M.; Martinon A. A generalization of semi-Fredholm operators, preprint. | MR 1285738

Gonzalez M.; Onieva V.M. On incomparability of Banach spaces, Math. Z. 192 (1986), 581-585. (1986) | MR 0847007 | Zbl 0602.46015

Gonzalez M.; Onieva V.M. Characterizations of tauberian operators, Proc. Amer. Math. Soc. 108 (1990), 399-405. (1990) | MR 0994777 | Zbl 0704.47016

Kadets M.I. Note on the gap between subspaces, Funct. Anal. Appl. 9 (1975), 156-157. (1975) | Zbl 0325.46020

Kalton N.J.; Wilansky A. Tauberian operators in Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 233-240. (1976) | MR 0473896

Kato T. Perturbation theory for linear operators, Springer-Verlag, 1980. | Zbl 0836.47009

Martinon A. Cantidades operacionales en teoría de Fredholm (Thesis), Univ. La Laguna, 1989. | MR 1067932

Pietsch A. Operator ideals, North-Holland, 1980. | MR 0582655 | Zbl 1012.47001

Rosenthal H.P. On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167-175. (1969) | MR 0248506 | Zbl 0184.15004

Schechter M. Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071. (1972) | MR 0295103 | Zbl 0274.47007

Sedaev A.A. The structure of certain linear operators (in Russian), Mat. Issled. 5 (1970), 166-175, MR 43#2540, Zbl. 247#47005. (1970) | MR 0276800

Stephani I. Operator ideals generalizing the ideal of strictly singular operators, Math. Nachrichten 94 (1980), 29-41. (1980) | MR 0582517 | Zbl 0455.47033

Weis L. Über striktly singuläre und striktly cosinguläre Operatoren in Banachräumen (Dissertation), Univ. Bonn, 1974.

Zemánek J. Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. (1984) | MR 0783991