It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that $$ \liminf _{n\rightarrow \infty } |\kern -0.8pt|\kern -0.8pt|T^n|\kern -0.8pt|\kern -0.8pt|< k, $$ where $|\kern -0.8pt|\kern -0.8pt|T|\kern -0.8pt|\kern -0.8pt|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$.
@article{118443, author = {Jaros\l aw G\'ornicki}, title = {Fixed points of asymptotically regular mappings in spaces with uniformly normal structure}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {639-643}, zbl = {0768.47027}, mrnumber = {1159810}, language = {en}, url = {http://dml.mathdoc.fr/item/118443} }
Górnicki, Jarosław. Fixed points of asymptotically regular mappings in spaces with uniformly normal structure. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 639-643. http://gdmltest.u-ga.fr/item/118443/
The solution by iteration of nonlinear functional equations in Banach spaces, Bull. AMS 72 (1966), 571-576. (1966) | MR 0190745 | Zbl 0138.08202
Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-436. (1980) | MR 0590555 | Zbl 0442.46018
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal., TMA 9 (1985), 103-108. (1985) | MR 0776365 | Zbl 0526.47034
On densifying and related mappings and their applications in nonlinear functional analysis, in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. | MR 0361946
Some properties of the characteristic convexity relating to fixed point theory, Pacific J. Math. 104 (1983), 343-350. (1983) | MR 0684294
Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. (2) 17 (1978), 547-554. (1978) | MR 0500642 | Zbl 0421.47031
Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure, Appl. Anal. 9 (1979), 121-124. (1979) | MR 0539537
A fixed point theorem for asymptotically regular mappings, to appear. | MR 1201441
Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen, Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. (1987) | MR 0971250
A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987), 481-483. (1987) | MR 0919440 | Zbl 0645.47050
On uniformly normal structure, Kexue Tongbao 33 (1988), 700-702. (1988) | Zbl 0681.46020
A geometrically aberrant Banach space with uniformly normal structure, Bull. Austral. Math. Soc. 38 (1988), 99-103. (1988) | MR 0968233 | Zbl 0646.46017