In this paper, we study the finite Hankel transformation on spaces of ge\-ne\-ra\-lized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation $$ \sum_{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int_{0}^{1}f(x)\varphi (x)\, dx. $$ A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \geq -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h'_\mu f$ of $f\in S'_\mu $ by $$ \langle (h'_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle, \quad \text{for } \varphi \in S_\mu . $$
@article{118442, author = {Jorge J. Betancor and Manuel T. Flores}, title = {A Parseval equation and a generalized finite Hankel transformation}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {627-638}, zbl = {0763.46028}, mrnumber = {1159809}, language = {en}, url = {http://dml.mathdoc.fr/item/118442} }
Betancor, Jorge J.; Flores, Manuel T. A Parseval equation and a generalized finite Hankel transformation. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 627-638. http://gdmltest.u-ga.fr/item/118442/
The Hankel-Schwartz transform for functions of compact support, Rend. Mat. Appl. 7 (3-4) (1987), 399-409. (1987) | MR 0986009
A mixed Parseval's equation and a generalized Hankel transformation of distributions, Can. J. Math. XLI (2) (1989), 274-284. (1989) | MR 1001612 | Zbl 0666.46046
Fourier Series and Boundary Value Problems, McGraw Hill, New York, 1963. | MR 0149173 | Zbl 0378.42001
An extension of the finite Hankel transform and applications, Int. J. Engng. 3 (1965), 539-559. (1965) | MR 0194853 | Zbl 0151.17102
On finite Hankel transformation of generalized functions, Pacific J. Math. 62 (1976), 365-378. (1976) | MR 0410365 | Zbl 0329.46044
Generalized functions, Vol. III, Academic Press, New York, 1967. | MR 0217416
Method of generalized finite Hankel transform, Z. Angew. Math. Mech. 51 (1971), 311-313. (1971) | MR 0284772
A mixed Parseval equation and the generalized Hankel transformation, Proc. Amer. Math. Soc. 102 (1988), 619-624. (1988) | MR 0928991
The finite Hankel-Schwartz transform, J. Korean Math. Soc. 26 (1) (1989), 647-655. (1989) | MR 1005866
Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions, Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655. (1989) | MR 1023593
Eigenfunction expansion of generalized functions, Nagoya Math. J. 72 (1978), 1-25. (1978) | MR 0514887 | Zbl 0362.34018
Orthogonal series representations for generalized functions, J. Math. Anal. Appl. 130 (1988), 316-333. (1988) | MR 0929938 | Zbl 0647.46037
Finite Hankel transforms of distributions, Pacific J. Math. 99 (1982), 439-458. (1982) | MR 0658074 | Zbl 0484.46039
On finite Hankel transforms, Phil. Mag. (7) 17 (1946), 16-25. (1946) | MR 0018263
The Use of Integral Transforms, Tata McGraw Hill, New Delhi, 1979. | Zbl 0237.44001
A class of expansions in series of Bessel functions, Proc. London Math. Soc. (2) 22 (1924), xiii-xvi. (1924)
Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1958. | Zbl 0849.33001
Orthonormal series expansions of certain distributions and distributional transform calculus, J. Math. Anal. Appl. 14 (1966), 263-275. (1966) | MR 0211259 | Zbl 0138.37804
Generalized Integral Transformations, Interscience Publishers, New York, 1968. | MR 0423007 | Zbl 0643.46029