On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems of higher order
Balanda, Lubomír ; Viszus, Eugen
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 615-625 / Harvested from Czech Digital Mathematics Library

The aim of this paper is to show that Liouville type property is a sufficient and necessary condition for the regularity of weak solutions of nonlinear elliptic systems of the higher order.

Publié le : 1991-01-01
Classification:  35D10,  35G20,  35J45,  35J60
@article{118441,
     author = {Lubom\'\i r Balanda and Eugen Viszus},
     title = {On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {615-625},
     zbl = {0773.35017},
     mrnumber = {1159808},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118441}
}
Balanda, Lubomír; Viszus, Eugen. On Liouville theorem and the regularity of weak solutions to some nonlinear elliptic systems  of higher order. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 615-625. http://gdmltest.u-ga.fr/item/118441/

Balanda L.; Viszus E. On Liouville theorem and Hölder continuity of weak solutions to some quasilinear elliptic systems of higher order, to appear. | MR 1197287 | Zbl 0817.35015

Giaquinta M.; Nečas J. On the regularity of weak solutions to non-linear elliptic systems of partial differential equations, J. Reine Angew. Math. 316 (1980), 140-159. (1980) | MR 0581329

Giaquinta M.; Nečas J. On the regularity of weak solutions to nonlinear elliptic systems via Liouville's type property, Comment. Math. Univ. Carolinae 20 (1979), 111-122. (1979) | MR 0526152 | Zbl 0396.35047

Fučík S.; John O.; Kufner A. Function Spaces, Academia, Prague, 1977. | MR 0482102

Nečas J. Introduction to the theory of non-linear elliptic equations, Teubner-Texte zur Mathematik, Leipzig, 1983. | MR 0731261

Nečas J. Les méthodes directes en Théorie des équations elliptiques, Academia, Prague, 1967. | MR 0227584