On centralizers of semiprime rings
Zalar, Borut
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 609-614 / Harvested from Czech Digital Mathematics Library

Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer of $\Cal K$. It is also proved that Jordan centralizers and centralizers of $\Cal K$ coincide.

Publié le : 1991-01-01
Classification:  16N60,  16U70,  16W10,  16W20,  16W25
@article{118440,
     author = {Borut Zalar},
     title = {On centralizers of semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {609-614},
     zbl = {0746.16011},
     mrnumber = {1159807},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118440}
}
Zalar, Borut. On centralizers of semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 609-614. http://gdmltest.u-ga.fr/item/118440/

Brešar M.; Vukman J. On some additive mapping in rings with involution, Aequationes Math. 38 (1989), 178-185. (1989) | MR 1018911

Brešar M.; Zalar B. On the structure of Jordan $\ast $-derivations, Colloquium Math., to appear. | MR 1180629

Herstein I.N. Topics in ring theory, University of Chicago Press, 1969. | MR 0271135 | Zbl 0232.16001

Herstein I.N. Theory of rings, University of Chicago Press, 1961.

Johnson B.E.; Sinclair A.M. Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. (1968) | MR 0239419 | Zbl 0179.18103

Šemrl P. Quadratic functionals and Jordan $\ast $-derivations, Studia Math. 97 (1991), 157-165. (1991) | MR 1100685