A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
@article{118439, author = {Barry J. Gardner}, title = {Radicals which define factorization systems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {601-607}, zbl = {0752.16009}, mrnumber = {1159806}, language = {en}, url = {http://dml.mathdoc.fr/item/118439} }
Gardner, Barry J. Radicals which define factorization systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 601-607. http://gdmltest.u-ga.fr/item/118439/
Construction of factorization systems in categories, J. Pure Appl. Algebra 9 (1977), 207-220. (1977) | MR 0478159
Compact modules, Comm. Algebra 16 (1988), 1209-1219. (1988) | MR 0939039 | Zbl 0653.16020
Compact nilpotent groups, Comm. Algebra 17 (1989), 2255-2268. (1989) | MR 1016864 | Zbl 0683.20028
Categorically compact locally nilpotent groups, Comm. Algebra 18 (1990), 3423-3435. (1990) | MR 1063986 | Zbl 0739.20012
Some degeneracy and pathology in non-associative radical theory, Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. | MR 0588424 | Zbl 0447.17004
Radical Theory, Longman, Harlow, 1989. | MR 1006673 | Zbl 1169.16012
Factorizations, denseness, separation, and relatively compact objects, Topology Appl. 27 (1987), 157-169. (1987) | MR 0911689 | Zbl 0629.18003
Compact Hausdorff objects, General Topology Appl. 4 (1974), 341-360. (1974) | MR 0367901 | Zbl 0289.54003
Compactness and product spaces, Colloq. Math. 7 (1959), 19-22. (1959) | MR 0117704
On unequivocal rings, Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. (1980) | MR 0605170 | Zbl 0464.16005
On ideals in over-rings, Publ. Math. Debrecen 35 (1988), 273-279. (1988) | MR 1005290 | Zbl 0688.16035
Strict radical classes of associative rings, Proc. Amer. Math. Soc. 39 (1973), 273-278. (1973) | MR 0313296 | Zbl 0244.16005