On a class of locally Butler groups
Bican, Ladislav
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 597-600 / Harvested from Czech Digital Mathematics Library

A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha < \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.

Publié le : 1991-01-01
Classification:  20K20,  20K27,  20K35
@article{118438,
     author = {Ladislav Bican},
     title = {On a class of locally Butler groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {597-600},
     zbl = {0748.20029},
     mrnumber = {1159805},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118438}
}
Bican, Ladislav. On a class of locally Butler groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 597-600. http://gdmltest.u-ga.fr/item/118438/

Arnold D. Notes on Butler groups and balanced extensions, Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. (1986) | MR 0850285 | Zbl 0601.20050

Bican L. Splitting in abelian groups, Czech. Math. J. 28 (1978), 356-364. (1978) | MR 0480778 | Zbl 0421.20022

Bican L. Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209-218. (1980) | MR 0580678

Bican L.; Salce L.; Hash(0X91Ad320) Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.

Bican L.; Salce L.; Štěpán J. A characterization of countable Butler groups, Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. (1985) | MR 0818715

Butler M.C.R. A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680-698. (1965) | MR 0218446 | Zbl 0131.02501

Dugas M. On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. (1988) | MR 0964027 | Zbl 0667.20043

Dugas M.; Hill P.; Rangaswamy K.M. Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643-664. (1990) | MR 0963246

Dugas M.; Rangaswamy K.M. Infinite rank Butler groups,, Trans. Amer. Math. Soc. 305 (1988), 129-142. (1988) | MR 0920150 | Zbl 0641.20036

Fuchs L. Infinite Abelian groups, vol. I and II, Academic Press, New York, 1973 and 1977. | MR 0255673 | Zbl 0338.20063

Fuchs L. Infinite rank Butler groups, preprint.

Fuchs L.; Metelli C. Countable Butler groups, Contemporary Math., to appear. | MR 1176115 | Zbl 0769.20025

Fuchs L.; Viljoen G. Note on the extensions of Butler groups, Bull. Austral. Math. Soc. 41 (1990), 117-122. (1990) | MR 1043972