A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha < \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets.
@article{118438, author = {Ladislav Bican}, title = {On a class of locally Butler groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {597-600}, zbl = {0748.20029}, mrnumber = {1159805}, language = {en}, url = {http://dml.mathdoc.fr/item/118438} }
Bican, Ladislav. On a class of locally Butler groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 597-600. http://gdmltest.u-ga.fr/item/118438/
Notes on Butler groups and balanced extensions, Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. (1986) | MR 0850285 | Zbl 0601.20050
Splitting in abelian groups, Czech. Math. J. 28 (1978), 356-364. (1978) | MR 0480778 | Zbl 0421.20022
Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209-218. (1980) | MR 0580678
Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.
A characterization of countable Butler groups, Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. (1985) | MR 0818715
A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680-698. (1965) | MR 0218446 | Zbl 0131.02501
On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. (1988) | MR 0964027 | Zbl 0667.20043
Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643-664. (1990) | MR 0963246
Infinite rank Butler groups,, Trans. Amer. Math. Soc. 305 (1988), 129-142. (1988) | MR 0920150 | Zbl 0641.20036
Infinite Abelian groups, vol. I and II, Academic Press, New York, 1973 and 1977. | MR 0255673 | Zbl 0338.20063
Infinite rank Butler groups, preprint.
Countable Butler groups, Contemporary Math., to appear. | MR 1176115 | Zbl 0769.20025
Note on the extensions of Butler groups, Bull. Austral. Math. Soc. 41 (1990), 117-122. (1990) | MR 1043972