Improving the recent result of the author we show that $\operatorname{ind}H=0$ is equivalent to $\operatorname{dim} H=0$ for every subgroup $H$ of a Hausdorff locally compact group $G$.
@article{118435, author = {Dmitri\u\i\ B. Shakhmatov}, title = {On zero-dimensionality of subgroups of locally compact groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {581-582}, zbl = {0746.22004}, mrnumber = {1159803}, language = {en}, url = {http://dml.mathdoc.fr/item/118435} }
Shakhmatov, Dmitriĭ B. On zero-dimensionality of subgroups of locally compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 581-582. http://gdmltest.u-ga.fr/item/118435/
General Topology, Warszawa, PWN, 1977. | MR 0500780 | Zbl 0684.54001
Abstract Harmonic Analysis, vol. 1. Structure of Topological Groups. Integration Theory. Group Representations, Die Grundlehren der mathematischen Wissenshaften, Bd. 115, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. | MR 0156915 | Zbl 0416.43001
Imbeddings into topological groups preserving dimensions, Topology Appl. 36 (1990), 181-204. (1990) | MR 1068169 | Zbl 0709.22001
Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21-37. (1991) | MR 1093863