Approximate inverse systems of uniform spaces and an application of inverse systems
Charalambous, Michael G.
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 551-565 / Harvested from Czech Digital Mathematics Library

The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with $\operatorname{dim} \leq n$ is the limit of an approximate inverse system of metric polyhedra of $\operatorname{dim} \leq n$. A completely metrizable separable space with $\operatorname{dim} \leq n$ is the limit of an inverse sequence of locally finite polyhedra of $\operatorname{dim} \leq n$. Finally, a new proof is derived of the important equality $\operatorname{dim} = \operatorname{Ind}$ for metric spaces.

Publié le : 1991-01-01
Classification:  54B25,  54B35,  54B99,  54E15,  54F45
@article{118433,
     author = {Michael G. Charalambous},
     title = {Approximate inverse systems of uniform spaces  and an application of inverse systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {551-565},
     zbl = {0785.54016},
     mrnumber = {1159801},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118433}
}
Charalambous, Michael G. Approximate inverse systems of uniform spaces  and an application of inverse systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 551-565. http://gdmltest.u-ga.fr/item/118433/

Charalambous M.G. A new covering dimension function for uniform spaces, J. London Math. Soc. (2) 11 (1975), 137-143. (1975) | MR 0375258 | Zbl 0306.54048

Charalambous M.G. The dimension of inverse limits, Proc. Amer. 58 (1976), 289-295. (1976) | MR 0410696 | Zbl 0348.54029

Engelking R. General Topology, Polish Scientific Publishers, Warsaw, 1977. | MR 0500780 | Zbl 0684.54001

Engelking R. Dimension Theory, Polish Scientific Publishers, Warsaw, 1978. | MR 0482697 | Zbl 0401.54029

Freudenthal H. Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1937), 145-234. (1937) | MR 1556968 | Zbl 0016.28001

Hurewicz W.; Wallman H. Dimension Theory, Princeton University Press, Princeton, 1941. | MR 0006493 | Zbl 0036.12501

Isbell J.R. Uniform spaces, Amer. Math. Soc. Surveys 12, 1964. | MR 0170323 | Zbl 0124.15601

Mardešić S. On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278-291. (1960) | MR 0116306

Mardešić S.; Rubin L.R. Approximate uniform spaces of compacta and covering dimension, Pacific J. Math. 138 (1989), 129-144. (1989) | MR 0992178

Nagami K. Dimension Theory, Academic Press, New York and London, 1970. | MR 0271918 | Zbl 0224.54060

Pasynkov B.A. On polyhedra spectra and dimension of bicompacta and of bicompact groups (in Russian), Dokl. Akad. Nauk SSSR 121 (1958), 45-48. (1958) | MR 0102058

Pasynkov B.A. Factorization theorems in dimension theory, Russian Math. Surveys 36 (1981), 175-209. (1981) | MR 0622723 | Zbl 0487.54034

Pears A.R. Dimension Theory of General Spaces, Cambridge Univ. Press, Cambridge, 1976. | MR 0394604 | Zbl 0312.54001

Spanier E.H. Algebraic Topology, McGraw-Hill Inc., New York, 1966. | MR 0210112 | Zbl 0810.55001