A construction is given, in a variety of groups, of a ``functorial center'' called the endocenter. The endocenter facilitates the identification of universal multiplication groups of groups in the variety, addressing the problem of determining when combinatorial multiplication groups are universal.
@article{118421,
author = {Jon D. Phillips and Jonathan D. H. Smith},
title = {The endocenter and its applications to quasigroup representation theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {32},
year = {1991},
pages = {417-422},
zbl = {0748.20016},
mrnumber = {1159788},
language = {en},
url = {http://dml.mathdoc.fr/item/118421}
}
Phillips, Jon D.; Smith, Jonathan D. H. The endocenter and its applications to quasigroup representation theory. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 417-422. http://gdmltest.u-ga.fr/item/118421/
Category Theory, Boston, Allyn and Bacon, 1973. | MR 0349791 | Zbl 1125.18300
Combinatorial Group Theory, New York, Dover, 1976. | MR 0422434 | Zbl 1130.20307
Varieties of Groups, Berlin, Springer-Verlag, 1967. | MR 0215899 | Zbl 0251.20001
A Course in The Theory of Groups, New York, Springer-Verlag, 1982. | MR 0648604 | Zbl 0836.20001
Representation Theory of Infinite Groups and Finite Quasigroups, Montréal, Les Presses de l'Université de Montréal, 1986. | MR 0859373 | Zbl 0609.20042