The endocenter and its applications to quasigroup representation theory
Phillips, Jon D. ; Smith, Jonathan D. H.
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 417-422 / Harvested from Czech Digital Mathematics Library

A construction is given, in a variety of groups, of a ``functorial center'' called the endocenter. The endocenter facilitates the identification of universal multiplication groups of groups in the variety, addressing the problem of determining when combinatorial multiplication groups are universal.

Publié le : 1991-01-01
Classification:  20E07,  20E10,  20F14,  20N05
@article{118421,
     author = {Jon D. Phillips and Jonathan D. H. Smith},
     title = {The endocenter and its applications to quasigroup representation theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {417-422},
     zbl = {0748.20016},
     mrnumber = {1159788},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118421}
}
Phillips, Jon D.; Smith, Jonathan D. H. The endocenter and its applications to quasigroup representation theory. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 417-422. http://gdmltest.u-ga.fr/item/118421/

Herrlich H.; Strecker G.E. Category Theory, Boston, Allyn and Bacon, 1973. | MR 0349791 | Zbl 1125.18300

Magnus W.; Karrass A.; Solitar D. Combinatorial Group Theory, New York, Dover, 1976. | MR 0422434 | Zbl 1130.20307

Neumann H. Varieties of Groups, Berlin, Springer-Verlag, 1967. | MR 0215899 | Zbl 0251.20001

Robinson D.J.S. A Course in The Theory of Groups, New York, Springer-Verlag, 1982. | MR 0648604 | Zbl 0836.20001

Smith J.D.H. Representation Theory of Infinite Groups and Finite Quasigroups, Montréal, Les Presses de l'Université de Montréal, 1986. | MR 0859373 | Zbl 0609.20042