The Consistency Strength of Successive Cardinals with the Tree Property
Foreman, Matthew ; Magidor, Menachem ; Schindler, Ralf-Dieter
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 1837-1847 / Harvested from Project Euclid
If $\omega_n$ has the tree property for all $2 \leq n < \omega$ and $2^{<\aleph_{\omega}} = \aleph_{\omega}$, then for all $X \in H_{\aleph_{\omega}}$ and $n < \omega, M^#_n(X)$ exists.
Publié le : 2001-12-14
Classification: 
@article{1183746629,
     author = {Foreman, Matthew and Magidor, Menachem and Schindler, Ralf-Dieter},
     title = {The Consistency Strength of Successive Cardinals with the Tree Property},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 1837-1847},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746629}
}
Foreman, Matthew; Magidor, Menachem; Schindler, Ralf-Dieter. The Consistency Strength of Successive Cardinals with the Tree Property. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  1837-1847. http://gdmltest.u-ga.fr/item/1183746629/