The Canary Tree Revisited
Hyttinen, Tapani ; Rautila, Mika
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 1677-1694 / Harvested from Project Euclid
We generalize the result of Mekler and Shelah [3] that the existence of a canary tree is independent of ZFC + GCH to uncountable regular cardinals. We also correct an error from the original proof.
Publié le : 2001-12-14
Classification: 
@article{1183746618,
     author = {Hyttinen, Tapani and Rautila, Mika},
     title = {The Canary Tree Revisited},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 1677-1694},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746618}
}
Hyttinen, Tapani; Rautila, Mika. The Canary Tree Revisited. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  1677-1694. http://gdmltest.u-ga.fr/item/1183746618/