Decidable Fragments of First-Order Modal Logics
Wolter, Frank ; Zakharyaschev, Michael
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 1415-1438 / Harvested from Project Euclid
The paper considers the set $\mathscr{M}\mathscr{L}_1$ of first-order polymodal formulas the modal operators in which can be applied to subformulas of at most one free variable. Using a mosaic technique, we prove a general satisfiability criterion for formulas in $\mathscr{M}\mathscr{L}_1$, which reduces the modal satisfiability to the classical one. The criterion is then used to single out a number of new, in a sense optimal, decidable fragments of various modal predicate logics.
Publié le : 2001-09-14
Classification: 
@article{1183746568,
     author = {Wolter, Frank and Zakharyaschev, Michael},
     title = {Decidable Fragments of First-Order Modal Logics},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 1415-1438},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746568}
}
Wolter, Frank; Zakharyaschev, Michael. Decidable Fragments of First-Order Modal Logics. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  1415-1438. http://gdmltest.u-ga.fr/item/1183746568/