Properties of Ideals on the Generalized Cantor Spaces
Kraszewski, Jan
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 1303-1320 / Harvested from Project Euclid
We define a class of productive $\sigma$-ideals of subsets of the Cantor space 2$^\omega$ and observe that both $\sigma$-ideals of meagre sets and of null sets are in this class. From every productive $\sigma$-ideal $\mathscr{I}$ we produce a $\sigma$-ideal $\mathscr{I}_\kappa$, of subsets of the generalized Cantor space 2$^\kappa$. In particular, starting from meagre sets and null sets in 2$^\omega$ we obtain meagre sets and null sets in 2$^\kappa$, respectively. Then we investigate additivity, covering number, uniformity and cofinality of $\mathscr{I}_\kappa$. For example, we show that $\text{non}(\mathscr{I} = \text{non}(\mathscr{I}_{\omega_1}) = \text{non}(\mathscr{I}_{\omega_2}).$ Our results generalizes those from [5].
Publié le : 2001-09-14
Classification:  Cantor Space,  $\sigma$-Ideals,  Null Sets,  Meagre Sets,  Cardinal Functions,  03E05
@article{1183746561,
     author = {Kraszewski, Jan},
     title = {Properties of Ideals on the Generalized Cantor Spaces},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 1303-1320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746561}
}
Kraszewski, Jan. Properties of Ideals on the Generalized Cantor Spaces. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  1303-1320. http://gdmltest.u-ga.fr/item/1183746561/