The Covering Numbers of Mycielski Ideals Are All Equal
Shelah, Saharon ; Steprans, Juris
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 707-718 / Harvested from Project Euclid
The Mycielski ideal $\mathfrak{M}_k$ is defined to consist of all sets $A \subseteq ^{\mathbb{N}}k$ such that $\{f \upharpoonright X : f \in A\} \neq ^Xk$ for all $X \in [\mathbb{N}]^{\aleph_0}$. It will be shown that the covering numbers for these ideals are all equal. However, the covering numbers of the closely associated Roslanowski ideals will be shown to be consistently different.
Publié le : 2001-06-14
Classification: 
@article{1183746468,
     author = {Shelah, Saharon and Steprans, Juris},
     title = {The Covering Numbers of Mycielski Ideals Are All Equal},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 707-718},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746468}
}
Shelah, Saharon; Steprans, Juris. The Covering Numbers of Mycielski Ideals Are All Equal. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  707-718. http://gdmltest.u-ga.fr/item/1183746468/