Slim Models of Zermelo Set Theory
Mathias, A. R. D.
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 487-496 / Harvested from Project Euclid
Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula $\Phi(\lambda, a)$ such that for any sequence $\langle A_{\lambda} \mid \lambda \text{a limit ordinal} \rangle$ where for each $\lambda, A_{\lambda} \subseteq ^{\lambda}2$, there is a supertransitive inner model of Zermelo containing all ordinals in which for every $\lambda A_{\lambda} = \{\alpha \mid\Phi(\lambda, a)\}$.
Publié le : 2001-06-14
Classification:  Zermelo Set Theory,  Fruitful Class,  Zermelo Tower,  Supertransitive Model,  03C30,  03E30,  03E45
@article{1183746455,
     author = {Mathias, A. R. D.},
     title = {Slim Models of Zermelo Set Theory},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 487-496},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746455}
}
Mathias, A. R. D. Slim Models of Zermelo Set Theory. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  487-496. http://gdmltest.u-ga.fr/item/1183746455/