Cohen Reals from Small Forcings
Pawlikowski, Janusz
J. Symbolic Logic, Tome 66 (2001) no. 1, p. 318-324 / Harvested from Project Euclid
We introduce a new cardinal characteristic r*, related to the reaping number r, and show that posets of size $<$ r* which add reals add unbounded reals; posets of size $<$ r which add unbounded reals add Cohen reals. We also show that add($\mathscr{M}$) $\leq$ min(r, r*). It follows that posets of size < add($\mathscr{M}$) which add reals add Cohen reals. This improves results of Roslanowski and Shelah [RS] and of Zapletal [Z].
Publié le : 2001-03-14
Classification:  04A15,  03E15
@article{1183746373,
     author = {Pawlikowski, Janusz},
     title = {Cohen Reals from Small Forcings},
     journal = {J. Symbolic Logic},
     volume = {66},
     number = {1},
     year = {2001},
     pages = { 318-324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746373}
}
Pawlikowski, Janusz. Cohen Reals from Small Forcings. J. Symbolic Logic, Tome 66 (2001) no. 1, pp.  318-324. http://gdmltest.u-ga.fr/item/1183746373/