$\diamond$ at Mahlo Cardinals
Zeman, Martin
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 1813-1822 / Harvested from Project Euclid
Given a Mahlo cardinal $\kappa$ and a regular $\epsilon$ such that $\omega_1 < \epsilon < \kappa$ we show that $\diamond_\kappa (cf = \epsilon)$ holds in $\mathbf{V}$ provided that there are only non-stationarily many $\beta < \kappa$, with $o(\beta) \geq \epsilon$ in $\mathbf{K}$.
Publié le : 2000-12-14
Classification: 
@article{1183746264,
     author = {Zeman, Martin},
     title = {$\diamond$ at Mahlo Cardinals},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 1813-1822},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746264}
}
Zeman, Martin. $\diamond$ at Mahlo Cardinals. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  1813-1822. http://gdmltest.u-ga.fr/item/1183746264/