Stationary Sets and Infinitary Logic
Shelah, Saharon ; Vaananen, Jouko
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 1311-1320 / Harvested from Project Euclid
Let K$^0_\lambda$ be the class of structures $\langle\lambda,<, A\rangle$, where $A \subseteq \lambda$ is disjoint from a club, and let K$^1_\lambda$ be the class of structures $\langle\lambda,<,A\rangle$, where $A \subseteq \lambda$ contains a club. We prove that if $\lambda = \lambda^{<\kappa}$ is regular, then no sentence of L$_{\lambda+\kappa}$ separates K$^0_\lambda$ and K$^1_\lambda$. On the other hand, we prove that if $\lambda = \mu^+,\mu = \mu^{<\mu}$, and a forcing axiom holds (and $\aleph^L_1 = \aleph_1$ if $\mu = \aleph_0$), then there is a sentence of L$_{\lambda\lambda}$ which separates K$^0_\lambda$ and K$^1_\lambda$.
Publié le : 2000-09-14
Classification: 
@article{1183746182,
     author = {Shelah, Saharon and Vaananen, Jouko},
     title = {Stationary Sets and Infinitary Logic},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 1311-1320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746182}
}
Shelah, Saharon; Vaananen, Jouko. Stationary Sets and Infinitary Logic. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  1311-1320. http://gdmltest.u-ga.fr/item/1183746182/