Was Sierpinski Right? IV
Shelah, Saharon
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 1031-1054 / Harvested from Project Euclid
We prove for any $\mu = \mu^{<\mu} < \theta < \lambda, \lambda$ large enough (just strongly inaccessible Mahlo) the consistency of $2^\mu$ = $ \lambda \rightarrow [\theta]^2_3$ and even $2^\mu$ = $\lambda \rightarrow [\theta]^2_{\sigma,2}$ for $\sigma < \mu$. The new point is that possibly $\theta > \mu^+$.
Publié le : 2000-09-14
Classification: 
@article{1183746168,
     author = {Shelah, Saharon},
     title = {Was Sierpinski Right? IV},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 1031-1054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746168}
}
Shelah, Saharon. Was Sierpinski Right? IV. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  1031-1054. http://gdmltest.u-ga.fr/item/1183746168/