An Ordinal Partition Avoiding Pentagrams
Larson, Jean A.
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 969-978 / Harvested from Project Euclid
Suppose that $\alpha = \gamma + \delta$ where $\gamma \geq \delta > 0$. Then there is a graph $\mathscr{G} = (\omega^{\omega^\alpha},E)$ which has no independent set of order type $\omega^{\omega^\alpha}$ and has no pentagram (a pentagram is a set of five points with all pairs joined by edges). In the notation of Erdos and Rado, who generalized Ramsey's Theorem to this setting, $\omega^{\omega^\alpha} \nrightarrow (\omega^{\omega^\alpha},5)^2.$
Publié le : 2000-09-14
Classification: 
@article{1183746165,
     author = {Larson, Jean A.},
     title = {An Ordinal Partition Avoiding Pentagrams},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 969-978},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746165}
}
Larson, Jean A. An Ordinal Partition Avoiding Pentagrams. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  969-978. http://gdmltest.u-ga.fr/item/1183746165/