Paires Elementaires de Corps Pseudo-Finis: Denombrement des Completions (Elementary Pairs of Pseudo-Finite Fields: Counting Completions)
Lejeune, Helene
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 705-718 / Harvested from Project Euclid
Let $\Pi$ be a complete theorie of pseudo-finite fields. In this article we prove that, in the langage of fields to which we add a unary predicate for a substructure, the theory of non trivial elementary pairs of models of II has 2$^{\aleph_0}$ completions, that is, the maximum that could exist.
Publié le : 2000-06-14
Classification: 
@article{1183746072,
     author = {Lejeune, Helene},
     title = {Paires Elementaires de Corps Pseudo-Finis: Denombrement des Completions (Elementary Pairs of Pseudo-Finite Fields: Counting Completions)},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 705-718},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1183746072}
}
Lejeune, Helene. Paires Elementaires de Corps Pseudo-Finis: Denombrement des Completions (Elementary Pairs of Pseudo-Finite Fields: Counting Completions). J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  705-718. http://gdmltest.u-ga.fr/item/1183746072/