Arithmetical Representations of Brownian Motion I
Fouche, Willem
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 421-442 / Harvested from Project Euclid
We discuss ways in which a typical one-dimensional Brownian motion can be approximated by oscillations which are encoded by finite binary strings of high descriptive complexity. We study the recursive properties of Brownian motions that can be thus obtained.
Publié le : 2000-03-14
Classification:  68Q30,  03D80,  60J65
@article{1183746030,
     author = {Fouche, Willem},
     title = {Arithmetical Representations of Brownian Motion I},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 421-442},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746030}
}
Fouche, Willem. Arithmetical Representations of Brownian Motion I. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  421-442. http://gdmltest.u-ga.fr/item/1183746030/