An Extension of the Cobham-Semenov Theorem
Bes, Alexis
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 201-211 / Harvested from Project Euclid
Let $\theta,\theta$' be two multiplicatively independent Pisot numbers, and let U, U' be two linear numeration systems whose characteristic polynomial is the minimal polynomial of $\theta$ and $\theta$', respectively. For every n $\geq$ 1, if A $\subseteq \mathbb{N}^n$ is U- and U'-recognizable then A is definable in $\langle \mathbb{N};+\rangle$.
Publié le : 2000-03-14
Classification: 
@article{1183746016,
     author = {Bes, Alexis},
     title = {An Extension of the Cobham-Semenov Theorem},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 201-211},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746016}
}
Bes, Alexis. An Extension of the Cobham-Semenov Theorem. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  201-211. http://gdmltest.u-ga.fr/item/1183746016/