Vaught's Conjecture for Modules Over a Serial Ring
Puninskaya, Vera
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 155-163 / Harvested from Project Euclid
It is proved that Vaught's conjecture is true for modules over an arbitrary countable serial ring. It follows from the structural result that every module with few models over a (countable) serial ring is $\omega$-stable.
Publié le : 2000-03-14
Classification: 
@article{1183746012,
     author = {Puninskaya, Vera},
     title = {Vaught's Conjecture for Modules Over a Serial Ring},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 155-163},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746012}
}
Puninskaya, Vera. Vaught's Conjecture for Modules Over a Serial Ring. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  155-163. http://gdmltest.u-ga.fr/item/1183746012/