The Distribution of Properly $\Sigma^0_2$ e-Degrees
Bereznyuk, Stanislaw ; Coles, Richard ; Sorbi, Andrea
J. Symbolic Logic, Tome 65 (2000) no. 1, p. 19-32 / Harvested from Project Euclid
We show that for every enumeration degree $a < 0'_e$ there exists an e-degree c such that $a \leq c < 0'_e$, and all degrees b, with $c \leq b < 0'_e$, are properly $\Sigma^0_2$.
Publié le : 2000-03-14
Classification: 
@article{1183746008,
     author = {Bereznyuk, Stanislaw and Coles, Richard and Sorbi, Andrea},
     title = {The Distribution of Properly $\Sigma^0\_2$ e-Degrees},
     journal = {J. Symbolic Logic},
     volume = {65},
     number = {1},
     year = {2000},
     pages = { 19-32},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183746008}
}
Bereznyuk, Stanislaw; Coles, Richard; Sorbi, Andrea. The Distribution of Properly $\Sigma^0_2$ e-Degrees. J. Symbolic Logic, Tome 65 (2000) no. 1, pp.  19-32. http://gdmltest.u-ga.fr/item/1183746008/